InterviewSolution
Saved Bookmarks
| 1. |
सारणिकों के गुणधर्मों का प्रयोग करके निम्नलिखित को सिद्ध कीजिएः `|(x,x^(2),yz),(y,y^(2),zx),(z,z^(2),xy)|=(x-y)(y-z)(z-x)(xy+yz+zx)` |
|
Answer» L.H.S `=|(x,x^(2),yz),(y,y^(2),zx),(z,z^(2),xy)|` `=|(x-y,x^(2)-y^(2),yz-zx),(y-z,y^(2)-z^(2),zx-xy),(z,z^(2),xy)|` `(R_(1)toR_(1)-R_(2),R_(2)toR_(2)-R_(3))` `=|(x-y,(x-y)(x+y),-z(x-y)),(y-z,(y-z)(y+z),-x(y-z)),(z,z^(2),xy)|` `=(x-y)(y-z)|(1,x+y,-z),(1,y+z,-x),(z,z^(2),xy)|` `=(x-y)(y-z)|(1,x+y,-z),(0,z-x,z-x),(0,-yz,xy+zx)|` `(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-zR_(2))` `=(x-y)(y-z)(z-x)|(1,x+y,-z),(0,1,1),(0,-yz,x+yz)|` `=(x=y)(y-z)(z-x).1|(1,1),(-yz,xy+zx)|` (`C_(1)`से विस्तार करने पर) `=(x-y)(y-z)(z-x)(xy+zx+yz)` `=(x=y)(y-z)(z-x)(xy+yz+zx)` |
|