InterviewSolution
Saved Bookmarks
| 1. |
`sec^(2)2x=1-tan2x` |
|
Answer» Given equation is `sec^(2)2x=1-tan2x` or `1+tan^(2)2x=1-tan2x` or `tan^(2)2x+tan2x=0` or `tan2x(1+tan2x)=0` `rArr tan2x=0` or `1+tan2x=0` If `tan2x=0`, then `2x=npi` `rArr x=(npi)/(2)` where `n in Z` and `tan2x = 1=tan(pi-pi/4)` `rArr tan2x=tan(3pi)/(4)` `rArr 2x=npi + (3pi)/(4)` `rArr x=(npi)/(2) + (3pi)/(8)` where `n in Z` Therefore, the general solution of given equations is `x=(npi)/(2)` or `(npi)/(2)+(3pi)/(8), n in Z` Ans. |
|