| 1. |
Show that \(2^{\frac{1}{4}}\) x \(4^{\frac{1}{8}}\) x \(8^{\frac{1}{16}}\) x \(16^{\frac{1}{32}}\)......∞ = 2 |
|
Answer» Let \(x\) = \(2^{\frac{1}{4}}\) x \(4^{\frac{1}{8}}\) x \(8^{\frac{1}{16}}\) x \(16^{\frac{1}{32}}\)......∞ ∴ log \(x\) = \(\frac{1}{4}\) log 2 + \(\frac{1}{8}\) log 4 + \(\frac{1}{16}\) log 8 + \(\frac{1}{32}\) log 16 + ..........∞ = \(\frac{1}{4}\) log 2 + \(\frac{1}{8}\) log 22 + \(\frac{1}{16}\) log 23 + \(\frac{1}{32}\) log 24 + ..........∞ = \(\frac{1}{4}\) log 2 + \(\frac{2}{8}\) log 2 + \(\frac{3}{16}\) log 2 + \(\frac{4}{32}\) log 2 + ..........∞ = \(\big(\)\(\frac{1}{4}\) + \(\frac{2}{8}\) + \(\frac{3}{16}\) + \(\frac{4}{32}\) + .........∞\(\big)\) log 2 .....(i) Now, \(\frac{1}{4}\) + \(\frac{2}{8}\) + \(\frac{3}{16}\) + \(\frac{4}{32}\) + ....∞ is an Arithmetico-Geometric series. Let S = \(\frac{1}{4}\) + \(\frac{2}{8}\) + \(\frac{3}{16}\) + \(\frac{4}{32}\) + .......∞ .....(ii) \(\frac{1}{2}\)S = \(\frac{1}{8}\) +\(\frac{2}{16}\) + \(\frac{3}{32}\) + .......∞ ........(iii) On subtracting eqn (iii) from eqn (ii), we get \(\frac{1}{2}\)S = \(\frac{1}{4}\) + \(\frac{1}{8}\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + ........∞ = \(\frac{\frac{1}{4}}{1-\frac{1}{2}}\) = \(\frac{\frac{1}{4}}{\frac{1}{2}}\) = \(\frac{1}{2}\) ⇒ S = 1 ∴ log \(x\) = 1 × log 2 (From (i)) ⇒ log \(x\) = log 2 ⇒ \(x\) = 2. |
|