InterviewSolution
Saved Bookmarks
| 1. |
Show that (a–b)2, (a2+b2) and (a + b)2 are in A.P. |
|
Answer» The terms given below are : (a–b)2, (a2+b2) and (a + b)2 Common difference, d1 = a2 + b2 – (a – b)2 d1 = a2 + b2 – (a2 + b2 - 2ab) d1 = a2 + b2 – a2 - b2 + 2ab d1= 2ab Common difference, d2 = (a + b)2 – (a2 + b2) d2 = a2 + b2 + 2ab – a2 –b2 d2 = 2ab Since, d1 = d2 i.e. the common difference is same. Therefore, the given terms are in A.P. |
|