Saved Bookmarks
| 1. |
Show that f(x) = cos2 x is a decreasing function on (0, π/2). |
|
Answer» Given as f(x) = cos2 x f'(x) = (d/dx)(cos2 x) ⇒ f’(x) = 2 cos x (–sin x) ⇒ f’(x) = –2 sin (x) cos (x) ⇒ f’(x) = –sin2x As given x belongs to (0, π/2). ⇒ 2x ∈ (0, π) ⇒ Sin (2x)> 0 ⇒ –Sin (2x) < 0 ⇒ f’(x) < 0 Thus, condition for f(x) to be decreasing Hence f(x) is decreasing on interval (0, π/2). Thus proved |
|