1.

Show that f(x) = cos2 x is a decreasing function on (0, π/2).

Answer»

Given as f(x) = cos2 x

f'(x) = (d/dx)(cos2 x)

⇒ f’(x) = 2 cos x (–sin x)

⇒ f’(x) = –2 sin (x) cos (x)

⇒ f’(x) = –sin2x

As given x belongs to (0, π/2).

⇒ 2x ∈ (0, π)

⇒ Sin (2x)> 0

⇒ –Sin (2x) < 0

⇒ f’(x) < 0

Thus, condition for f(x) to be decreasing

Hence f(x) is decreasing on interval (0, π/2).

Thus proved



Discussion

No Comment Found