1.

Show that f(x) = x3 – 15x2 + 75x – 50 is an increasing function for all x ϵ R.

Answer»

Given as f(x) = x3 – 15x2 + 75x – 50

f'(x) = (d/dx)(x3 – 15x2 + 75x – 50)

⇒ f’(x) = 3x2 – 30x + 75

⇒ f’(x) = 3(x2 – 10x + 25)

⇒ f’(x) = 3(x – 5)2

As given x ϵ R

⇒ (x – 5)2 > 0

⇒ 3(x – 5)2 > 0

⇒ f’(x) > 0

Thus, condition for f(x) to be increasing

Hence, f(x) is increasing on interval x ∈ R



Discussion

No Comment Found