Saved Bookmarks
| 1. |
Show that f(x) = x3 – 15x2 + 75x – 50 is an increasing function for all x ϵ R. |
|
Answer» Given as f(x) = x3 – 15x2 + 75x – 50 f'(x) = (d/dx)(x3 – 15x2 + 75x – 50) ⇒ f’(x) = 3x2 – 30x + 75 ⇒ f’(x) = 3(x2 – 10x + 25) ⇒ f’(x) = 3(x – 5)2 As given x ϵ R ⇒ (x – 5)2 > 0 ⇒ 3(x – 5)2 > 0 ⇒ f’(x) > 0 Thus, condition for f(x) to be increasing Hence, f(x) is increasing on interval x ∈ R |
|