

InterviewSolution
Saved Bookmarks
1. |
Show that (i) `x+3 ` is factor of `69+11x-x^(2)+x^(3)` (ii) `2x-3` is factor of `x+2x^(3)-9x^(2)+12` |
Answer» (I) let `p(x) =x^(3)-x^(2)+11 x+69` we have to show that , x+3 is a factor of p(x) . `i.e., p(-3)=0` Now `p(-3)=(-3)^(3)-(-3)^(2)+11(-3)+69` `=-2-9-33+69=-69+69=0` hence ,(x+3) is a factor of p(x) . (ii) Let `p(x) =2x^(3)-9x^(2)+x+12` we have to show that ,2x -3 is a factor of p(x). i.e., `p((3)/(2))=0` Now , `p((3)/(2))=2((3)/(2))^(3)-9((3)/(2))^(2)+(3)/(2)+12` `=2xx(27)/(8) -9xx(9)/(4)+(3)/(2)+12` ` =(27)/(4)-(81)/(4) +(3)/(2)+12` `=(27-81+6+48)/(4)=(81-81)/(4)=0` Hence ,`(2x-3)` is a factor of p(x). |
|