

InterviewSolution
1. |
Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. |
Answer» Data : ABCD is a parallelogram and diagonals AC and BD bisects at right angles at O’. To Prove: ABCD is a rhombus. Proof: Here, AC and BD bisect each other at right angles. ∴ AO = OC BO = OD and ∠AOB = ∠BOC = ∠COD = ∠AOD = 90° If sides are euqal to each other, then ABCD is said to be a rhombus. Now, ∆AOD and ∆COD, AO = OC (Data) ∠AOD = ∠COD = 90° (Data) OD is common. ∴ ∆AOD ≅ ∆COD (SAS Postulate) ∴ AD = CD …………… (i) Similarly, ∆AOD = ∆AOB AD = AB ………… (ii) ∆AOB ≅ ∆COB ∴ AB = BC ……….. (iii) ∆COB ≅ ∆COD ∴ BC = CD ……………. (iv) From (i), (ii), (iii) and (iv), AB = BC = CD = AD All 4 sides of parallelogram ABCD are equal, then it is rhombus. |
|