Saved Bookmarks
| 1. |
Show that if two chords of a circle bisect one another they must bediameters. |
|
Answer» Given-> 2 chords AB and CD O is midpoint of AB and CD To prove->AB and CD are diameter Proof->`/_AOC and /_BOD` `/_AOC=/_BOD` `OA=OB` `OC=OD` `/_AOC cong /_BOD(SAS)` `AC=BD-(1)` `In /_AOD and /_BOC` `/_AOD=/_BOC` `OA=OB` `OC=OD` `/_AOD cong /_BOC(SAS)` `AD=BC-(2)` adding equation 1 and 2 `AC+AD=BC+BD` `CAD=CBD` CD is diameter of circle AB is diameter of circle. |
|