1.

Show that m – 1 is a factor of m21 – 1 and m22 – 1.

Answer»

i. p(m) = m – 1 

Divisor = m – 1 

∴ take m = 1 

Remainder = p(1) 

p(m) = m21 – 1 

∴ P(1) = 121 – 1 = 1 – 1 = 0 

∴ By factor theorem, m - 1 is a factor of m21 -1.

ii. p(m) = m22 – 1 

Divisor = m – 1 

∴ take m = 1 

Remainder = p(1) 

p(m) = m22 – 1 

∴ P(1) = 122 – 1 = 1 – 1 = 0 

∴ By factor theorem, m -1 is a factor of m22 – 1.



Discussion

No Comment Found