1.

Show that * on R –{ - 1}, defined by \((a*b)=\frac{a}{(b+1)}\) is neither commutative nor associative.

Answer»

let a = 1,b = 0 ∈ R - { - 1} 

a*b = \(\frac{1}{0+1}\) = 1 

And b*a = \(\frac{1}{0+1}\) = 0 

Hence * is not commutative. 

Let c = 3. 

(a*b)*c = 1*c = \(\frac{1}{3+1}=\frac{1}{4}\)

a*(b*c) = a*\(\frac{0}{3+1}\) = 1*0 = \(\frac{1}{0+1}\) = 1 

Hence * is not associative.



Discussion

No Comment Found

Related InterviewSolutions