Saved Bookmarks
| 1. |
Show that the area of the triangle contained between the vectors veca and vecb is one half of the magnitude of vecaxxvecb. |
|
Answer» Solution :In `DeltaOAB, vec(OA)=VECB, vec(OB)=veca` and `angleAOB=theta and AC=h` `:.` from `DeltaACO` `(AC)/(OA)=SINTHETA` `:. H=bsintheta` Now AREA of `DeltaOAB=(1)/(2)xx|vec(OB)|h` `=(1)/(2)|veca|h` `:.` Area = `(1)/(2)absintheta [because h=bsintheta]` `=(1)/(2)|veca||vecb|sinthetahatn` `:.vecS=(1)/(2)(vecaxxvecb)hatn` Magnitude `S=(1)/(2)|vecaxxvecb|`
|
|