InterviewSolution
Saved Bookmarks
| 1. |
Show that the function`f(x)={x^2sin(1/x),ifx!=0 0,ifx=0`is differentiable at `x=0`and `f^(prime)(0)=0` |
|
Answer» LHD=`lim_(h->0) ((-h)^2sin(-1/h) - 0)/(-h)` `lim_(h->0) (-h^2 sin(1/h))/(-h)` `= lim_(h->0) h xx sin(1/h)` `= 0` RHD=`lim_(h->0) (h^2sin(1/h) - 0)/h ` `= lim_(h->0) h xx sin(1/h)` `=0` RHD`=`LHD `:.` f(x) is diff at x= 0 Answer |
|