InterviewSolution
Saved Bookmarks
| 1. |
Show that `(x^3+x^2+x+1)/(x^3-x^2+x-1)=(x^2+x+1)/(x^2-x+1)`,is not possible for any `x epsilon R`. |
|
Answer» `(x^3+x^2+x+1)/(x^3-x^2+x-1) = (x^2+x+1)/(x^2-x+1)` =>`((x^3+x)+(x^2+1))/((x^3+x)+(x^2+1)) = ((x^2+1)+x)/((x^2+1)-x)` We know, `(a+b)/(a-b) = a/b`.So, `=>(x^3+x)/(x^2+1) = (x^2+1)/x` `=>x(x^3+x) = (x^2+1)^2` `=>x^4+x^2 = x^4+1+2x^2` `=>x^2 = -1` For any real number `x`, square of `x` can not be negative. So, both sides can not be equal. |
|