InterviewSolution
Saved Bookmarks
| 1. |
सिद्ध कीजिए कि `2 tan^(-1)""(1)/(x)=sin^(-1)""((2x)/(x^(2)+1))` |
|
Answer» माना `tan^(-1)""(1)/(x)=thetaimplies (1)/(x)=tan theta implies cot theta =x` `:.` बायाँ पक्ष `=2tan^(-1)""(1)/(x)=2 theta ` अब , दायाँ पक्ष `=sin^(-1)((2x)/(x^(2)+1))` `=sin^(-1)((2cot theta)/(1+cot^(2)theta))=sin^(-1)((2 tan theta )/(1+tan^(2)theta))` `= sin^(-1)(sin2 theta)=2 theta=2tan^(-1)""(1)/(x)` `implies sin^(-1)((2x)/(x^(2)+1))=2tan^(-1)""(1)/(x)` |
|