1.

सिद्ध कीजिए कि `2 tan^(-1)""(1)/(x)=sin^(-1)""((2x)/(x^(2)+1))`

Answer» माना `tan^(-1)""(1)/(x)=thetaimplies (1)/(x)=tan theta implies cot theta =x`
`:.` बायाँ पक्ष `=2tan^(-1)""(1)/(x)=2 theta `
अब , दायाँ पक्ष `=sin^(-1)((2x)/(x^(2)+1))`
`=sin^(-1)((2cot theta)/(1+cot^(2)theta))=sin^(-1)((2 tan theta )/(1+tan^(2)theta))`
`= sin^(-1)(sin2 theta)=2 theta=2tan^(-1)""(1)/(x)`
`implies sin^(-1)((2x)/(x^(2)+1))=2tan^(-1)""(1)/(x)`


Discussion

No Comment Found