1.

सिद्ध कीजिए कि `cos^(-1)""((63)/(65))+2 tan^(-1)""(1)/(5))=sin^(-1)""(3)/(5)`

Answer» हम जानते है कि
` 2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2)))`
` 2 tan^(-1)""(1)/(5)=cos^(-1)((1-1//25)/(1+1//25))`
`= cos^(-1)((24)/(26))=cos^(-1)((12)/(13))`
`:.` दिये गये समीकरण से
` cos^(-1)""((63)/(65))+cos^(-1)((12)/(13))`
`=cos^(-1)[(63)/(65) xx (12)/(13)-sqrt(1-((63)/(65))^(2))sqrt(1-((12)/(13))^(2))]`
`= cos^(-1)[(756)/(845)-(80)/(845)]`
` =cos^(-1)[(676)/(845)]=sin^(-1)sqrt(1-((676)/(845))^(2))`
`=sin^(-1)((507)/(845))`
`implies cos^(-1)""(63)/(65)+cos^(-1)""(12)/(13)=sin^(-1)""(3)/(5)`


Discussion

No Comment Found