1.

सिद्ध कीजिए कि ` tan^(-1)((x)/(sqrt(a^(2)-x^(2))))=sin^(-1)""(x)/(a)`

Answer» हमें सिद्ध करना है कि
` tan^(-1)((x)/(sqrt(a^(2)-x^(2))))=sin^(-1)""(x)/(a)`
माना `sin^(0-1)""(x)/(a)=theta` तब `(x)/(a)=sin thetaimpliesx=a sin theta`
` :. (x)/(sqrt(a^(2)-x^(2)))=(a sin theta)/(sqrt(a^(2)-x^(2)sin^(2)theta))`
`= (a sin theta)/(a cos theta)=tan theta `
`implies tan^(-1)((x)/(sqrt(a^(2)-x^(2))))= tan^(-1)(tan theta)=theta`
तथा `theta=sin^(-1)""(x)/(a)`
`implies tan^(-1)((x)/(sqrt(a^(2)-x^(2))))=sin^(-1)""(x)/(a)`


Discussion

No Comment Found