1.

सिद्ध कीजिए - `"sin"^(-1)(3)/(5)-"sin"^(-1)(8)/(17)="cos"^(-1)(84)/(85)`.

Answer» L.H.S. `= "sin"^(-1)(3)/(5)-"sin"^(-1)(8)/(17)`
`=cos^(-1)sqrt(1-((3)/(5))^(2))-cos^(-1)sqrt(1-((8)/(17))^(2))`
`= cos^(-1)sqrt(1-(9)/(25))-cos^(-1)sqrt(1-(64)/(289))`
`= "cos"^(-1)(4)/(5)-"cos"^(-1)(15)/(17)`
`= cos^(-1)[(4)/(5)xx(15)/(17)+sqrt(1-((4)/(5))^(2))sqrt(1-((15)/(17))^(2))]`
`= cos^(-1)[(60)/(85)+(3)/(5)xx(8)/(17)]`
`= cos^(-1)((60)/(85)+(24)/(85))`
`= cos^(-1)((84)/(85))`
= R.H.S.
यही सिद्ध करना था |


Discussion

No Comment Found