1.

सिद्ध कीजिए - `tan^(-1).(2)/(11)+tan^(-1).(7)/(24)=tan^(-1).(1)/(2).`

Answer» यहाँ `x=(2)/(11)` और `y=(7)/(24),` तब
`xy=(14)/(264)lt 1`
`L.H.S.=tan^(-1).(2)/(11)+tan^(-1).(7)/(24)`
`=tan^(-1)[((2)/(11)+(7)/(24))/(1-(2)/(11)xx(7)/(24))]`
`[because tan6(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))," यदि "xy lt 1]`
`=tan^(-1)(((48+77)/(264))/((264-14)/(264)))`
`=tan^(-1)((125)/(250))`
`=tan^(-1)((125)/(250))`
`=tan^(-1)((1)/(2))`यही सिद्ध करना था।


Discussion

No Comment Found