InterviewSolution
Saved Bookmarks
| 1. |
सिद्ध कीजिए - `tan^(-1).(2)/(11)+tan^(-1).(7)/(24)=tan^(-1).(1)/(2).` |
|
Answer» यहाँ `x=(2)/(11)` और `y=(7)/(24),` तब `xy=(14)/(264)lt 1` `L.H.S.=tan^(-1).(2)/(11)+tan^(-1).(7)/(24)` `=tan^(-1)[((2)/(11)+(7)/(24))/(1-(2)/(11)xx(7)/(24))]` `[because tan6(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))," यदि "xy lt 1]` `=tan^(-1)(((48+77)/(264))/((264-14)/(264)))` `=tan^(-1)((125)/(250))` `=tan^(-1)((125)/(250))` `=tan^(-1)((1)/(2))`यही सिद्ध करना था। |
|