1.

Simplify: `(3 sqrt2)/(sqrt3 + sqrt6) - (4 sqrt3)/(sqrt6 + sqrt2) + (sqrt6)/(sqrt2 + sqrt3)`

Answer» `(3 sqrt2)/(sqrt3 + sqrt6) - (4 sqrt3)/(sqrt6 + sqrt2) + (sqrt6)/(sqrt2 + sqrt3)`
`= (3 sqrt2 (sqrt3 - sqrt6))/((sqrt3 + sqrt6) (sqrt3 - sqrt6)) - (4 sqrt3 (sqrt6 - sqrt2))/((sqrt6 + sqrt2) (sqrt6 - sqrt2)) + (sqrt6 ( sqrt2 - sqrt3))/((sqrt2 + sqrt3) (sqrt2 - sqrt3))`
`= (3 sqrt2 (sqrt3 - sqrt6))/((sqrt3)^(2) - (sqrt6)^(2)) - (4 sqrt3 (sqrt6 - sqrt2))/((sqrt6)^(2) - (sqrt2)^(2)) + (sqrt6 (sqrt2 - sqrt3))/((sqrt2)^(2) - (sqrt3)^(3))`
`= (3 sqrt2 (sqrt3 - sqrt6))/(3 -6) - (4 sqrt3 (sqrt6 - sqrt2))/(6-2) + (sqrt6 (sqrt2 - sqrt3))/(2-3)`
`= (3 sqrt2 (sqrt3 - sqrt6))/(-3) - (4 sqrt3 (sqrt6 - sqrt2))/(4) + (sqrt6 (sqrt2 - sqrt3))/(-1)`
`= -sqrt2 (sqrt3 - sqrt6) - sqrt3 (sqrt6 - sqrt2) - sqrt6 (sqrt2 - sqrt3)`
`= - sqrt6 + sqrt12 - sqrt18 + sqrt6 - sqrt12 + sqrt18`
= 0
Hence the expression = 0


Discussion

No Comment Found