InterviewSolution
Saved Bookmarks
| 1. |
Simplify: `(3 sqrt2)/(sqrt3 + sqrt6) - (4 sqrt3)/(sqrt6 + sqrt2) + (sqrt6)/(sqrt2 + sqrt3)` |
|
Answer» `(3 sqrt2)/(sqrt3 + sqrt6) - (4 sqrt3)/(sqrt6 + sqrt2) + (sqrt6)/(sqrt2 + sqrt3)` `= (3 sqrt2 (sqrt3 - sqrt6))/((sqrt3 + sqrt6) (sqrt3 - sqrt6)) - (4 sqrt3 (sqrt6 - sqrt2))/((sqrt6 + sqrt2) (sqrt6 - sqrt2)) + (sqrt6 ( sqrt2 - sqrt3))/((sqrt2 + sqrt3) (sqrt2 - sqrt3))` `= (3 sqrt2 (sqrt3 - sqrt6))/((sqrt3)^(2) - (sqrt6)^(2)) - (4 sqrt3 (sqrt6 - sqrt2))/((sqrt6)^(2) - (sqrt2)^(2)) + (sqrt6 (sqrt2 - sqrt3))/((sqrt2)^(2) - (sqrt3)^(3))` `= (3 sqrt2 (sqrt3 - sqrt6))/(3 -6) - (4 sqrt3 (sqrt6 - sqrt2))/(6-2) + (sqrt6 (sqrt2 - sqrt3))/(2-3)` `= (3 sqrt2 (sqrt3 - sqrt6))/(-3) - (4 sqrt3 (sqrt6 - sqrt2))/(4) + (sqrt6 (sqrt2 - sqrt3))/(-1)` `= -sqrt2 (sqrt3 - sqrt6) - sqrt3 (sqrt6 - sqrt2) - sqrt6 (sqrt2 - sqrt3)` `= - sqrt6 + sqrt12 - sqrt18 + sqrt6 - sqrt12 + sqrt18` = 0 Hence the expression = 0 |
|