1.

Simplify: `= (4 sqrt3)/(2 - sqrt2) - (30)/(4 sqrt3 - sqrt18) - (sqrt18)/(3-sqrt12)`

Answer» Given expression `= (4 sqrt3)/(2 - sqrt2) - (30)/(4 sqrt3 - sqrt18) - (sqrt18)/(3-sqrt12)`
`= (4 sqrt3 (2 sqrt2))/((2 - sqrt2) (2 + sqrt2)) - (30 (4 sqrt3 + sqrt18))/((4sqrt3 - sqrt18) (4 sqrt3 + sqrt18)) - (sqrt18 (3 + sqrt12))/((3-sqrt12) (3 + sqrt12))`
`= (4 sqrt3 (2 + sqrt2))/((2)^(2) - (sqrt2)^(2)) - (30 (4 sqrt3 + sqrt18))/((4sqrt3)^(2) - (sqrt18)^(2)) - (sqrt18 (3 + sqrt12))/((3)^(2) - (sqrt12)^(2))`
`= (4 sqrt3 (2 + sqrt2))/(4-2) - (30(4 sqrt3 + sqrt18))/(48 - 18) - (sqrt18 (3 + sqrt12))/(9 - 12)`
`= (4 sqrt3 (2 + sqrt2))/(2)- (30 (4 sqrt3 + sqrt18))/(30) - (sqrt18 (3 + sqrt12))/(-3)`
`= 2 sqrt3 (2 + sqrt2) - (4 sqrt3 + 3 sqrt2) - (3 sqrt2 (3 + 2 sqrt3))/(-3)`
`=4 sqrt3 + 2 sqrt6 - 4sqrt3 - 3sqrt2 + 3sqrt2 + 2 sqrt6`
`=4 sqrt6`
Hence the given expression `= 4 sqrt6`


Discussion

No Comment Found