 
                 
                InterviewSolution
| 1. | Simplify:(i) \(\{4^{-1}\times 3^{-1}\}^{2}\)(ii) \(\{5^{-1}\div 6^{-1}\}^{3}\)(iii) \((2^{-1}+3^{-1})^{-1}\)(iv) \(\{3^{-1}\times 4^{-1}\}^{-1}\times 5^{-1}\)(v) \((4^{-1}-5^{-1})\div 3^{-1}\) | 
| Answer» (i) \(\{4^{-1}\times 3^{-1}\}^{2}\) ⇒ \((\frac{1}{4}\times \frac{1}{3})^{2}\)= \((\frac{1}{12})^{2}\)= \(\frac{1}{144}\)[Using \(a^{-n}\)=\(\frac{1}{a^{n}}\); \(a^{n}\)=\(a\times a...... .......n\, times\)] (ii) \(\{5^{-1}\div 6^{-1}\}^{3}\) ⇒ \((\frac{1}{5}\div \frac{1}{6})^{3}\)[Using \(a^{-n}\)=\(\frac{1}{a^{n}}\) ] ⇒ \((\frac{1}{5}\times 6)^{3}\)= \(\frac{6^3}{5^3}\)=\(\frac{216}{125}\)[Using and \(\frac{1}{a}\div \frac{1}{b}\)= \(\frac{1}{a}\times \frac{1}{b}\)] ⇒ \(\frac{6^3}{5^3}\)=\(\frac{216}{125}\)[Using \(a^{n}\)=\(a\times a...... .......n\, times\)] (iii) \((2^{-1}+3^{-1})^{-1}\) ⇒ \((\frac{1}{2}+\frac{1}{3})^{-1}\)[Using \(a^{-n}\)=\(\frac{1}{a^{n}}\)] ⇒ \((\frac{3+2}{6})^{-1}\)= \((\frac{5}{6})^{-1}\)= \(\frac{6}{5}\)[Using \(a^{-n}\)=\(\frac{1}{a^{n}}\)] (iv) \(\{3^{-1}\times 4^{-1}\}^{-1}\times 5^{-1}\) ⇒ \((\frac{1}{3}\times \frac{1}{4})^{-1}\times \frac{1}{5}\)[Using \(a^{-n}\)=\(\frac{1}{a^{n}}\)] ⇒ \((\frac{1}{12})^{-1}\times \frac{1}{5}\)= \(\frac{12}{5}\)[Using \(a^{-n}\)=\(\frac{1}{a^{n}}\)] (v) \((4^{-1}-5^{-1})^{-1}\div 3^{-1}\) ⇒ \((\frac{1}{4}-\frac{1}{5})^{-1}\div \frac{1}{3}\)[Using \(a^{-n}\)=\(\frac{1}{a^{n}}\) ] ⇒ \((\frac{5-4}{20})^{-1}\times 3\)[Using and \(\frac{1}{a}\div \frac{1}{b}\)= \(\frac{1}{a}\times \frac{1}{b}\) ] ⇒ \(\frac{1}{20}\times 3\)= \(\frac{3}{20}\) | |