1.

Simplify: `(sqrt2 (2 + sqrt3))/(sqrt3 (sqrt3 + 1)) - (sqrt2 (2 - sqrt3))/(sqrt3 (sqrt3 -1))`

Answer» `(sqrt2 (2 + sqrt3))/(sqrt3 (sqrt3 + 1)) - (sqrt2 (2 - sqrt3))/(sqrt3 (sqrt3 -1))`
`= (sqrt2 (2 + sqrt3) (sqrt3 -1))/(sqrt3 (sqrt3 + 1) (sqrt3 -1)) - (sqrt2 (2 - sqrt3) (sqrt3 + 1))/(sqrt3 (sqrt3 -1) (sqrt3 + 1))`
`= (sqrt2 (2 sqrt3 + 3 - 2- sqrt3))/(sqrt3 {(sqrt3)^(2) - (1)^(2)}) - (sqrt2 (2 sqrt3 -3 + 2 - sqrt3))/(sqrt3 {(sqrt3)^(2) - (1)^(2)})`
`= (sqrt2 (sqrt3 + 1))/(sqrt3 (3 -1)) - (sqrt2 (sqrt3-1))/(sqrt3 (3-1))`
`= (sqrt2 (sqrt3 + 1))/(2sqrt3) - (sqrt2 (sqrt3 -1))/(2sqrt3) = (sqrt2 (sqrt3 + 1- sqrt3+1))/(2sqrt3)`
`= (sqrt2 xx 2)/(2sqrt3) = (sqrt2)/(sqrt3) xx (sqrt3)/(sqrt3) = (sqrt6)/(3)`
`:.` Given expression `= (sqrt6)/(3)`


Discussion

No Comment Found