InterviewSolution
Saved Bookmarks
| 1. |
sin+2cos=1 ,, then prove thatcos-2sin=2 |
|
Answer» Given that Sin A + 2 cos A = 1 Squaring on both sides, we get (sin A + 2 cos A)^2 = 1 We know that (a+b)^2 = a^2 + b^2 + 2ab. (sin^2 A + 4 cos^2 A + 4 sin A cos A) = 1 4 cos^2 A + 4 sin A cos A = 1 - sin^2 A 4 cos^2 A + 4 sin A cos A = cos^2 A 3 cos^2 A + 4 sin A cos A = 0 3 cos^2 A = - 4 sin A cos A ---- (1). Given 2 sin A - cos A Squaring on both sides, we get (2 sin A - cos A)^2 = 4 sin^2 A + cos^2 A - 4 sin A cos A = 4 sin^2 A + cos^2 A + 3 cos^2 A = 4 sin^2 A + 4 cos^2 A = 4(sin^2 A + cos^2 A) = 4. 2 sin A - cos A = 2.LHS = RHS. |
|