1.

\sin \theta=\frac{5}{13}, find the remaining trigonometric ratios.13

Answer»

sinθ= 5/13 [Given]

∴cosecθ= 1/sinθ= 1÷ (5/13)

∴cosecθ= 13/5

We know that,

sin2θ+ cos2θ= 1

∴(5/13)2+ cos2θ= 1

∴25/169 + cos2θ= 1

∴cos2θ= 1 – 25/169

∴cos2θ= (169 – 25 )/169

∴cos2θ= 144/169

∴cosθ= ±√ (144/169)

∴cosθ= ±12/13

But,θis an acute angle [Given]

∴All trigonometric ratios must be positive,

∴cosθ= 12/13

secθ= 1/cosθ

∴secθ= 1÷ (12/13)

∴secθ= 13/12

tanθ= sinθ÷ cosθ

∴tanθ= 5/13 ÷ 12/13

∴tanθ= 5/13 × 13/12.

∴tanθ= 5/12

cotθ= 1/tanθ

∴cotθ= 1÷ (5/12)

∴cotθ= 12/5



Discussion

No Comment Found