InterviewSolution
Saved Bookmarks
| 1. |
SinA = 1/x then CosA = ?1. \({\sqrt{x^2 + 1} \over x}\)2. \(x \over \sqrt{x^2-1}\)3. \({\sqrt{x^2-1} \over x}\)4. \(x \over \sqrt{x^2 + 1}\) |
|
Answer» Correct Answer - Option 3 : \({\sqrt{x^2-1} \over x}\) Given: SinA = 1/x Concept Used: Sinθ = Perpendicular / Hypotenuse Cosθ = Base / Hypotenuse Base2 + Perpendicular2 = Hypotenuse2 Calculation: Sinθ = Perpendicular / Hypotenuse SinA = 1/x Comparing get, Perpendicular = 1 and Hypotenuse = x Base = √x2 - 1 CosA = Base / Hypotenuse ⇒ CosA = \({\sqrt{x^2-1} \over x}\) ∴ CosA = \({\sqrt{x^2-1} \over x}\). |
|