1.

Six point masses of mass m each are at the vertices of a regular hexagon of side L. Calculate the force on any of the masses.

Answer»

Let us consider the following diagram in which size point masses are placed at six sides.

A, B, C, D, E, F.

AC = AG + GC + = 2AG

= 2I cos 30º

= 2I\(\sqrt{\frac{3}{2}}\)\(\sqrt3\) I = AE

AD = AH + HJ + JD

= I sin 30º + I + I sin 30º

= 2 I

Force on A due to B, F1\(\frac{GMm}{I^2}\) along A to B

\(\frac{Gm^2}{I^2}\)

Force on A due to C,F2\(\frac{Gm.m}{(\sqrt3I)^2}\)

\(\frac{Gm^2}{3I^2}\)  along A to C [\(\because\) AC = \(\sqrt3I\)]

Force on A due to D,F3\(\frac{Gm.m}{(\sqrt2I)^3}\)

\(\frac{Gm^2}{4I^2}\) along A to D [\(\because\) AD = 2I]

Force on A due to E,, F4\(\frac{Gm.m}{(\sqrt3I)^2}\)

\(\frac{Gm^2}{3I^2}\) along A to E

Force on A due to F, F5\(\frac{Gm.m}{(I)^2}\) along A to F

\(\frac{Gm^2}{I^2}\) along A to F

Resultant force due to F1 and F5,

F1\(\sqrt{F_1^2+F^2_5+2F_2F_5\cos120^o}\)

\(\frac{Gm^2}{I^2}\) along A to D [Angle b/w F1 and F5= 120º]

Resultant force due to F2 and F4,

F1\(\sqrt{F_1^2+F^2_4+2F_2F_4\cos60^o}\)

\(\frac{\sqrt3Gm^2}{3I^2}\) = \(\frac{Gm^2}{\sqrt3I^2}\) along A to D

\(\because\) Net force along A to D = F1 + F2 + F3

\(\frac{Gm^2}{I^2}+\frac{Gm^2}{\sqrt3I^2}+\frac{Gm^2}{4I^2}\)

\(\frac{Gm^2}{I^2}\)\(\big(1+\frac{1}{\sqrt3}+\frac{1}{4}\big)\)



Discussion

No Comment Found

Related InterviewSolutions