InterviewSolution
Saved Bookmarks
| 1. |
Solution of `(2x - 10y^3)(dy)/(dx) + y = 0` is: |
|
Answer» `(2x-10y^3)dy/dx + y = 0` `=>(2x-10y^3)dy/dx =- y` `=>(2x)/y - 10y^2 = -dx/dy` `=>dx/dy +(2x)/y = 10y^2` Comparing the given equation with first order differential equation, `dx/dy+Px = Q(y)`, we get,`P = 2/y and Q(y) = 10y^2` So, Integrating factor `(I.F) = e^(int 2/y) dy` `I.F.= e^(2logy) = e^(logy^2) = y^2` We know, solution of differential equation, `y(I.F.) = intQ(I.F.)dy` `:.`Our solution will be, `x(y^2) = int 10y^2(y^2)dy` `=>xy^2 = 10y^5/5+c` `=>xy^2 = 2y^5+c` |
|