InterviewSolution
Saved Bookmarks
| 1. |
Solution of the differential equation `dy/dx=(y^3)/(e^(2x)+y^2)` , isA. `e^(-2x) y^(2) + 2In|y|= c`B. `e^(2x)y^(2)=2In|y| = c`C. `e^(x)+In|y| = c`D. None of these |
|
Answer» Correct Answer - A `(dy)/(dx)=(y^(3))/(e^(2x)+y^(2))` Dividing by `e^(2x)` `therefore" "(dy)/(dx)=(y^(3)e^(-2x))/(1+y^(2)e^(-2x))` `therefore" "dy + y^(2)e^(-2x)dy = y^(3)e^(-2x)dx` `therefore" "int 2 (dy)/(y) + int 2 (ye^(-2x)dy - y^(2)e^(-2x)dx)= 0` `therefore" "int 2 (dy)/(y)+ int d(e^(-2x)y^(2))+c=0` `therefore" "2 "In"|y| + e^(-2x) y^(2) = c` |
|