InterviewSolution
Saved Bookmarks
| 1. |
Solution of the differential equation `tan y.sec^(2) x dx + tan x. sec^(2)y dy = 0` isA. `tan y tan x = C`B. `(tan y)/(tan x) =C`C. `(tan^(2)x)/(tan y) = C`D. None of these |
|
Answer» Correct Answer - a Given , ` (sec^(2)x)/(tanx) dx = -(sec^(2)y)/(tany) dy` On integrating , we get ` rArr int (sec^(2)x)/(tanx) dx =- int (sec^(2)y)/(tany) dy " "` …(i) Put tan x = u ` rArr sec^(2) x dx = du and tan y = v ` `rArr sec^(2) y dy = dv` From Eq. (i) ` int (du)/u = - int (du)/v` ` rArr log u = - log v + log C rArr uv = C` ` :. tan x * tany = C` |
|