InterviewSolution
Saved Bookmarks
| 1. |
solution of the differential equation `xdy-ydx=sqrt(x^2+y^2 )dx` isA. ` y + sqrt(x^(2)+y^(2))=Cx`B. ` y + sqrt(x^(2)+y^(2))=Cx^(2)`C. ` y + sqrt(x^(2)+y^(2))=C`D. None of these |
|
Answer» Correct Answer - b Given equation can be written as ` x dy = ( sqrt(x^(2)+y^(2))+y)dx,` I.e ` (dy)/(dx) = (sqrt(x^(2)+y^(2))+y)/x + y" "` …(i) This is a homogenous differential equation . To simplify it , Put ` y - vx rArr (dy)/(dx) = v+x (dv)/(dx)` ` v+ x (dv)/(dx) = (sqrt(x^(2)+v^(2)x^(2))+vx)/x` i.e `v + x (dv)/(dx) = sqrt(1+v^(2))+v` ` x (dv)/(dx) = sqrt(1+v^(2))` ` rArr (dv)/(sqrt(1+v^(2)))=(dx)/x" " ` ...(ii) On integrating both sides of Eq. (ii) ,we get ` log ( v + sqrt(1+v^(2))) = log x + log C` ` rArr v + sqrt(1+v^(2))= Cx` ` rArr y/x + sqrt(1+(y^(2))/(x^(2)))= Cx` `rArr y + sqrt(x^(2) + y^(2)) = Cx^(2)` |
|