InterviewSolution
Saved Bookmarks
| 1. |
Solve `2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2`. |
|
Answer» If `cos x=0`, then `2 sin^(2) x=-2 or sin^(2) x=-1`, which is not possible. Clearly, `cos x ne 0` Now, `2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2` Dividing both sides by `cos^(2)x`, we get `2 tan^(2) x-5 tan x-8=-2 sec^(2) x` or `2 tan^(2) x-5 tan x-8+2 (1+ tan^(2) x)=0` or `4 tan^(2) x-5 tan x-6=0` or `(tan x-2) (4 tan x+3)=0` Now, `tan x-2 =0` Let `tan x=2=tan alpha` `rArr x=npi +alpha = npi +tan^(-1) 2, n in Z` or `4 tan x+3=0` `rArr tan x=-3/4 = tan beta` (let) `rArr x=mpi + tan^(-1) (-3/4)`, where `m in Z` |
|