1.

Solve: `|(2x-1)/(x-1)|gt2,x in R`

Answer» Correct Answer - `((3)/(4),1)uu(1,oo)`
Using`|x|gta iff x lt -a x gt a`, we have
`|(2x-1)/(x-1)|gt2 iff(2x-1)/(x-1)lt-2or(2x-1)/(x-1)gt2`.
Case I When`(2x-1)/(x-1)lt-2`
`(2x-1)/(x-1)+2lt0 rArr (2x-1+2x-2)/(x-1) lt 0 rArr (4x-3)/(x-1) lt 0`.
`therefore (4x-3 lt0and x-1gt0)or(4x-3 gt0 and x-1lt0)`
`rArr (xlt(3)/(4)andxgt1) or(xgt(3)/(4) and x lt1)`
`rArr (3)/(4)ltxlt1 rArr x in((3)/(4),1)`.
Case II When `(2x-1)/(x-1) gt 2`
Then, `(2x-1)/(x-1) -2 gt 0 rArr (2x-1-2x+2)/(x-1) gt 0 rArr (1)/(x-1) gt0`
`rArr x-1gt0rArr gt1 rArrx in(1,oo)`.
`therefore "solution set " =((3)/(4),1)uu(1,oo)`.


Discussion

No Comment Found