1.

Solve `(3)/(x-2)lt1, " when "x inR`.

Answer» Correct Answer - `x in (-oo,2)uu(5,oo)`
`(3)/(x-2)-1lt0 rArr(3-x+2)/(x-2)lt0rArr(5-x)/(x-2)lt0`.
`therefore (5-xlt0andx-2gt0)or(5-xgt0 andx-2lt0)`
`rArr(xgt5 and xgt2)or(xlt5 and xlt2)`
`rArr(xgt5 and xlt2)rArrx in(-oo,2)uu(5,oo)`.


Discussion

No Comment Found