InterviewSolution
Saved Bookmarks
| 1. |
Solve byfactorization: `1/(x+4)-1/(x-7)=(11)/(30), x!=4, 7` |
|
Answer» Given equation is `(1)/(x+4)-(1)/(x-7)=(11)/(30)` `implies((x-7)-(x+4))/((x+4)(x-7))=(11)/(30)` `implies(x-7-x-4)/(x^(2)-7x+4x-28)=(11)/(30)` `implies(-11)/(x^(2)-3x-28)=(11)/(30)` `implies11(x^(2)-3x-28)=-11xx30` `impliesx^(2)-3x-28=-30` `impliesx^(2)-3x+2=0` `impliesx^(2)-(2+1)x+2=0` `impliesx^(2)-2x-1x+2=0` `impliesx(x-2)-1(x-2)=0` `implies(x-2)(x-1)=0` `impliesx-2=0orx-1=0` when `x-2=0impliesx=2` and `x-1=0impliesx=1` Hence, 2 and 1 are roots of the equation. |
|