1.

Solve each of the following system of inequations in R x + 5 > 2(x + 1), 2 – x < 3(x + 2)

Answer»

Given,

x + 5 > 2(x + 1) and 2 – x < 3(x + 2) 

Let us consider the first inequality. 

x + 5 > 2(x + 1) 

⇒ x + 5 > 2x + 2 

⇒ x + 5 – 5 > 2x + 2 – 5 

⇒ x > 2x – 3 

⇒ 2x – 3 < x 

⇒ 2x – 3 + 3 < x + 3 

⇒ 2x < x + 3 

⇒ 2x – x < x + 3 – x 

⇒ x < 3 

∴ x ∈ (–∞, 3) ...(1) 

Now, 

Let us consider the second inequality. 

2 – x < 3(x + 2) 

⇒ 2 – x < 3x + 6 

⇒ 2 – x – 2 < 3x + 6 – 2

⇒ –x < 3x + 4 

⇒ 3x + 4 > –x 

⇒ 3x + 4 – 4 > –x – 4 

⇒ 3x > –x – 4 

⇒ 3x + x > –x + x – 4 

⇒ 4x > –4

\(\frac{4x}{4}\) > \(\frac{-4}{4}\)

⇒ x > –1 

∴ x ∈ (–1, ∞) ...(2) 

From (1) and (2), we get 

x ∈ (–∞, 3) ∩ (–1, ∞) 

∴ x ∈ (–1, 3) 

Thus, 

The solution of the given system of inequations is (–1, 3).



Discussion

No Comment Found