1.

Solve for x and y: 6(ax + by) = 3a + 2b, 6(bx – ay) = 3b – 2a

Answer»

The given equations are 

6(ax + by) = 3a + 2b 

⇒6ax + 6by = 3a + 2b ………(i) 

and 6(bx – ay) = 3b – 2a 

⇒6bx – 6ay = 3b – 2a ………(ii) 

On multiplying (i) by a and (ii) by b, we get 

6a2x + 6aby = 3a2 + 2ab ……….(iii) 

6b2x - 6aby = 3b2 - 2ab ……….(iv) 

On adding (iii) and (iv), we get 

6(a2 + b2)x = 3(a2 + b2)

x = 3(a2+ b2)/6(a2+b2) = 1/2

On substituting x = 1/2 in (i), we get: 

6a × 1/2 + 6by = 3a + 2b 

6by = 2b 

y = 2b/6b = 1/3 

Hence, the required solution is x = 1/2 and y = 1/3.



Discussion

No Comment Found