1.

Solve for x and y: a2 x + b2 y = c2 , b2 x + a2 y = d2

Answer»

The given equations are 

a2 x + b2 y = c2 ………(i) 

b2 x + a2 y = d2 ………(ii) 

Multiplying (i) by a2 and (ii) by b2 and subtracting, we get 

a4 x – b4 x = a2 c2 - b2 d2

⇒ x = \(\frac{a^2c^2-b^2d^2}{a^4-b^4}\)

Now, multiplying (i) by b2 and (ii) by a2 and subtracting, we get

b4 y – a4 y = b2 c2 - a2 d2

⇒ y =\(\frac{b^2c^2-a^2d^2}{a^4-b^4}\)

Hence, x = \(\frac{a^2c^2-b^2d^2}{a^4-b^4}\) and y = \(\frac{b^2c^2-a^2d^2}{a^4-b^4}\)



Discussion

No Comment Found