Saved Bookmarks
| 1. |
Solve for x and y: a2 x + b2 y = c2 , b2 x + a2 y = d2 |
|
Answer» The given equations are a2 x + b2 y = c2 ………(i) b2 x + a2 y = d2 ………(ii) Multiplying (i) by a2 and (ii) by b2 and subtracting, we get a4 x – b4 x = a2 c2 - b2 d2 ⇒ x = \(\frac{a^2c^2-b^2d^2}{a^4-b^4}\) Now, multiplying (i) by b2 and (ii) by a2 and subtracting, we get b4 y – a4 y = b2 c2 - a2 d2 ⇒ y =\(\frac{b^2c^2-a^2d^2}{a^4-b^4}\) Hence, x = \(\frac{a^2c^2-b^2d^2}{a^4-b^4}\) and y = \(\frac{b^2c^2-a^2d^2}{a^4-b^4}\) |
|