1.

Solve for x and y:\(\frac{bx}a+\frac{ay}b=a^2+b^2\),x + y = 2ab

Answer»

The given equations are:

\(\frac{bx}a+\frac{ay}b=a^2+b^2\)

By taking LCM, we get: 

b2+ a2y/ab = a2 + b2 

⇒ b2 x + a2 y = (ab)a2 + b2 

⇒b2 x + a2 y = a3 b +ab3 …..(i) 

Also, x + y = 2ab …….(ii) 

On multiplying (ii) by a2 , we get: 

a2 x + a2 y = 2a3 b ……(iii) 

On subtracting (iii) from (i), we get: 

(b2 – a2)x = a3 b +ab3 – 2a3

⇒ (b2 – a2)x = -a3 b +ab3 

⇒ (b2 – a2 )x = ab(b2 – a2)

⇒(b2 – a2)x = ab(b2 – a2

∴x = ab(b2− a2) (b2− a2) = ab 

On substituting x = ab in (i), we get: 

b2 (ab) + a2 y = a3 b + ab3 

⇒ a2 y = a3

⇒ a3b/a2 = ab 

Hence, the solution is x = ab and y = ab.



Discussion

No Comment Found