Saved Bookmarks
| 1. |
Solve for x and y:\(\frac{bx}a+\frac{ay}b=a^2+b^2\),x + y = 2ab |
|
Answer» The given equations are: \(\frac{bx}a+\frac{ay}b=a^2+b^2\) By taking LCM, we get: b2+ a2y/ab = a2 + b2 ⇒ b2 x + a2 y = (ab)a2 + b2 ⇒b2 x + a2 y = a3 b +ab3 …..(i) Also, x + y = 2ab …….(ii) On multiplying (ii) by a2 , we get: a2 x + a2 y = 2a3 b ……(iii) On subtracting (iii) from (i), we get: (b2 – a2)x = a3 b +ab3 – 2a3 b ⇒ (b2 – a2)x = -a3 b +ab3 ⇒ (b2 – a2 )x = ab(b2 – a2) ⇒(b2 – a2)x = ab(b2 – a2) ∴x = ab(b2− a2) (b2− a2) = ab On substituting x = ab in (i), we get: b2 (ab) + a2 y = a3 b + ab3 ⇒ a2 y = a3 b ⇒ a3b/a2 = ab Hence, the solution is x = ab and y = ab. |
|