Saved Bookmarks
| 1. |
Solve for x and y:\(\frac{bx}{a}-\frac{ay}b+a + b =0\),bx – ay + 2ab = 0 |
|
Answer» The given equations are: bx/a - ay/b + a + b = 0 By taking LCM, we get: b2x – a2y = - a2b – b2a …..(i) and bx – ay + 2ab = 0 bx – ay = -2ab …….(ii) On multiplying (ii) by a, we get: abx – a2y = - 2a2b ……(iii) On subtracting (i) from (iii), we get: abx – b2x = 2a2b + a2b + b2a = - a2b + b2a ⇒x(ab – b2) = -ab(a – b) ⇒x(a – b)b = -ab(a – b) ∴x = −ab(a−b)/(a−b)b = -a On substituting x = -a in (i), we get: b2 (-a) – a2 y = -a2 b – b2 a ⇒ -b2a – a2y = -a2b – b2a ⇒ -a2 y = -a2 b ⇒ y = b Hence, the solution is x = -a and y = b. |
|