1.

Solve for x and y:\(\frac{bx}{a}-\frac{ay}b+a + b =0\),bx – ay + 2ab = 0

Answer»

The given equations are: 

bx/a - ay/b + a + b = 0 

By taking LCM, we get: 

b2x – a2y = - a2b – b2a …..(i) 

and bx – ay + 2ab = 0 

bx – ay = -2ab …….(ii) 

On multiplying (ii) by a, we get: 

abx – a2y = - 2a2b ……(iii) 

On subtracting (i) from (iii), we get: 

abx – b2x = 2a2b + a2b + b2a = - a2b + b2a

⇒x(ab – b2) = -ab(a – b) 

⇒x(a – b)b = -ab(a – b) 

∴x = −ab(a−b)/(a−b)b = -a 

On substituting x = -a in (i), we get: 

b2 (-a) – a2 y = -a2 b – b2

⇒ -b2a – a2y = -a2b – b2

⇒ -a2 y = -a2

⇒ y = b 

Hence, the solution is x = -a and y = b.



Discussion

No Comment Found