1.

Solve for x (in terms of a and b) :x/x-b + b/x-a = 2\(\frac{a}{x-b} + \frac{b}{x-a} = 0\)

Answer»

\(\cfrac{a}{(x-b)}+\cfrac{b}{x-a}\) = 2

\(\cfrac{a(x-a)+b(x-b)}{{(x-b)}(x-a)}\) = 2

a(x − a) + b(x − b) = 2(x − a)(x − b)

ax − a+ bx − b= 2(x− bx − ax + ab)

(a + b)x − a− b= 2x− 2(a + b)x + 2ab = 0 

−2x+ (a + b)x + 2(a + b)x − a− b− 2ab = 0

2x− (a + b)x − 2(a + b)x + (a + b)= 0 

2x(x − (a + b)) − (a + b)(x − (a + b)) = 0 

(x − (a + b))(2x − (a + b)) = 0

x − (a + b) = 0 or, 2x − (a + b) = 0 

x = (a + b),x = \(\cfrac{a+b}2\)

∴x = (a + b) \(\cfrac{(a+b)}2\)



Discussion

No Comment Found

Related InterviewSolutions