

InterviewSolution
Saved Bookmarks
1. |
Solve sin–1 [dy/dx] = x + y. |
Answer» dy/dx = sin (x + y) x + y = t 1 + (dy/dx) = dt/dx (dt/dx) – 1 = sin t dt/dx = 1 + sin t dt/(1 + sin t) = dx Integrating both sides we get ∫ dt/(1 + sin t) = ∫ dx ∫ (1 − sin t/(cos2 t)) dt = x + c ∫ sec2 t dt – ∫ tan t.sec t dt = x + c tan t – sec t = x + c ⇒ tan (x + y) – sec (x + y) = x + c |
|