1.

Solve the differential equation : `(dy)/(dx)=(x^(2)-y^(2))/(xy)`.

Answer» `(dy)/(dx)=(x^(2)-y^(2))/(xy)`……….`(1)`
It is a homogenous differential equation.
Let `y=vx`
`implies (dy)/(dx)=v+x(dv)/(dx)`
Put these values in eq. `(1)`
`v+x(dv)/(dx)=(x^(2)-v^(2)x^(2))/(x^(2)v)=(1-v^(2))/(v)`
`implies x(dv)/(dx)=(1-v^(2))/(v)-v=(1-2v^(2))/(v)`
`implies (v)/(1-2v^(2))dv=(dx)/(x)`
`implies int(v)/(1-2v^(2))dv=int(dx)/(x)` Let `1-2v^(2)=t`
`implies int(dt)/(-4t)=int(dx)/(x)impliesvdv=(dt)/(-4)`
`implies -(1)/(4)logt+logc=logx`
`implies logc=logx+logt^(1//4)`
`implies c=x*t^(1//4)`
`implies c^(4)=x^(4)*t=x^(4)*(1-2v^(2))`
`=x^(4)(1-(2y^(2))/(x^(2)))`
`implies c_(1)=x^(2)(x^(2)-2y^(2))`.


Discussion

No Comment Found

Related InterviewSolutions