InterviewSolution
Saved Bookmarks
| 1. |
Solve the differential equation `e^(x) tan y dx + (1-e^(x))sec^(2) y dy = 0` |
|
Answer» Integrating the equation, we get `int (e^(x))/(1-e^(x))dx + int(sec^(2)y)/(tan y)dy = 0` Put `1-e^(x) = t` for `1^(st)` integral and tan y = u for `2^(nd)` integral `rArr -e^(x)dx = dt` and `sec^(2) y dy = du` `rArr int (-dt)/(t) + int(d u)/(u) = 0` `rArr -In|t| + In|u| = InC` `rArr u = Ct` `rArr tan y = C(1-e^(x))` |
|