 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Solve the differential equation `(x+1)(dy)/(dx) =2xy, " given that " y(2)=3.` | 
| Answer» Correct Answer - `y(x+1)^(2)=27e^((2x-4))` `int (1)/(y)dy =int (2x)/((x+1))dx = 2int ((x+1)-1)/((x+1))dx =2int {1-(1)/((x+1))}dx` ` rArr log |y|=2x - 2 log |x+1|+log |C_(1)|` `rArr log |y|=log |e^(2x)|-log|(x+1)^(2)|+log |C_(1)|` `rArr log|(y(x+1)^(2))/(e^(2x))|=log|C_(1)|rArr (y(x+1)^(2))/(e^(2x))=pm C_(1)=C` (say). Then, `y(x+1)^(2)=Ce^(2x).` Putting x =2 and y =3 in (i), we get `C=27e^(-4)`. `therefore y(x+1)^(2)=27e^(2x-4)` is the required solution. | |