1.

Solve the differential equation : `x(dy)/(dx)+y-x+xycotx=0`, `x ne 0`.

Answer» The given differential may be written as
` x (dy)/(dx) + (1 + x cot x )y = x `
`rArr (dy)/(dx) + ((1)/(x) + cot x ) y = 1 `
This is of the form ` (dy)/(dx) + Py = Q`, where ` P = ((1)/(x) + cot x ) and Q = 1 `
Thus, the given differential equation is linear.
` IF = e ^(int Pdx) = e ^( int ((1)/(x) + cot x ) dx) = e ^(log x + log sin x) `
`" " = e ^( log (x sinx )) = x sinx `
So, the solution of the given differential equation is given by
`y xx (IF) = int (Q xx IF) dx + C`,
i.e. , `y (x sin x) = int ( 1 xx (x sin x ) dx +C `
` " " = int underset("I")( x )underset("II") (sin) x dx +C`
` " " = x ( - cos x ) - int 1 *( - cos x ) dx + C `
` " " = - xcos x + int cos x dx + C `
` " " = - x cos x + sin x +C`.
` therefore y = (1)/(x) - cot x + (C)/( x sin x ) ` is the required solution.


Discussion

No Comment Found