InterviewSolution
Saved Bookmarks
| 1. |
Solve the equation : `(a)/(x-b)+(b)/(x-a)=2" "(xneb,a)` |
|
Answer» Given equation is `(a)/(x-b)+(b)/(x-a)=2` `implies(a)/(x-b)+(b)/(x-a)=1+1` `implies(a)/(x-b)-1+(b)/(x-a)=1+1` `implies(a)/(x-b)-1+(b)/(x-a)-1=0` `implies(a-x+b)/(x-b)+(b-x+a)/(x-a)=0` `implies(a+b-x)((1)/(x-b)+(1)/(x-a))=0` `impliesa+b-x=0or(1)/(x-b)+(1)/(x-a)=0` when `a+b-x=0impliesx=a+b` and when `(1)/(x-b)+(1)/(x-a)=0implies(x-a+a-b)/((x-b)(x-a))=0` `implies2x-a-b=0` `implies2x=a+b` `impliesx=(a+b)/(2)` Hence, `x=a+bandx=(a+b)/(2)` are roots of the equaton. Alternatively, `implies(1)/(x-b)=-(1)/(a-x)` `impliesx-b=a-x` `2x=a+b` `x=(a+b)/(2)` |
|