1.

Solve the equation and check the result : 3(2k + 1) – 2(k – 5) – 5(5 – 2k) = 16

Answer»

Given 3(2k + 1) – 2(k T 5) – 5(5 – 2k) = 16 

⇒ 6k + 3-2k + 10-25 + 10k = 16 (Distributive property) 

⇒ 14k – 12 = 16 

⇒ 14k – 12 + 12 – 16 + 12 (Add 12 on both sides) 

⇒ 14k = 28

⇒ 14k/14 = 28/14 (Divide by 14 on both sides) 

⇒ k = 2 

Check:

Substitute k = 2 in 

3(2k + 1) – 2(k – 5) – 5(5 – 2k) = 16 

LHS = 3(2k + 1) – 2(k – 5) – 5(5 – 2k) 

= 3[2 × 2 + 1] – 2[2 – 5] – 5[5 – 2 × 2] 

= 3[4 + 1] – 2(- 3) – 5(5 – 4) 

= 15 + 6 – 5 – 16 = RHS

Hence verified.



Discussion

No Comment Found