1.

Solve the following differential equation :`(("x"^2-1)"dy")/("dx")+2"x y"=2/(("x"^2-1))`

Answer» The given differential equation may be written as
`(dy)/(dx) + { (2x)/(( x ^(2) - 1 ))} y = (2)/(( x ^(2) - 1 ) ^(2)) " " ` ... (i)
This is of the form ` (dy)/(dx) + Py = Q, `
where `P = (2x)/((x ^(2) - 1 )) and Q = (2)/( ( x^(2) - 1 ) ^(2)) `
Thus, the given differential equatiion is linear.
` IF = e ^(int Pdx) = e ^(int (2x)/(( x ^(2)-1)) dx) = e ^( log (x^(2) -1) ) = ( x ^(2) - 1 )`
So, the required solution is given by
`yxx IF = int {Q xx IF } dx + C `
i.e., `y xx (x ^(2) -1 ) = int { (2)/(( x ^(2) - 1 ) ^(2)) xx ( x ^(2) - 1 ) } dx +C `
` " " = 2 int (dx )/(( x ^(2) - 1 )) + C `
` " " = 2 int (1)/(2) {(1)/(( x - 1 )) - (1)/(( x + 1 )) } dx + C ` [ by partial fraction ]
` " " = log |( x - 1 )/( x+ 1 )| + C .`
Hence, ` y (x ^(2) - 1 ) = log |(x - 1 )/(x + 1)| + C` is the required solution.


Discussion

No Comment Found