1.

Solve the following differential equation:(y - sin2x)dx + tanx dy = 0

Answer»

(y - sin2x)dx + tanx dy = 0

\(\frac{dy}{dx} = \frac{sin^2x - y}{tanx}\)

⇒ \(\frac{dy}{dx} + \frac y{tanx} = \frac{sin^2x}{tanx} = sinx. cos x\)

which is linear differential equation

\(\therefore I.F = e^{\int P dx}\)

\(= e^{\int\frac1{tanx}dx}\)

\(= e^{\int cot x\,dx}\)

\(= e^{log\, sinx}\)

\(= sin x\)

\(\therefore y \times(I.F) = \int Q \times (I.F)dx\)

\(y \times sin x= \int (sinx \,cos x)sinx\,dx\)

\(= \int sin^2x \,cosx\,dx\)

\(= \frac{sin^3x}{3} + C\)

⇒ \(y = \frac{sin^2x}{3} + \frac C{sin\,x}\)

⇒ \(y = \frac{sin^2x}{3 } + C \,cosecx\)

is solution of given differential equation.



Discussion

No Comment Found

Related InterviewSolutions